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ABSTRACT
Prediction of the rate at which COVID-19 spreads has a critical
impact on public health policy. Subsequently, many scientists have
developed deep learning and epidemiology models to forecast fu-
ture numbers of COVID-19 cases. However, it can be difficult to
extrapolate trends and compare predictions made by different mod-
els. Furthermore, some models that were created previously may
rely on the number of active COVID-19 cases which is no longer
reported. Therefore, we propose a framework we call the COVID
Forecaster framework for predicting and visualizing future num-
bers of COVID-19 cases which includes a back end deep learning
prediction model (the COVID Forecaster Model), and a front end vi-
sualization (the COVID Forecaster UI (User Interface)). The COVID
Forecaster Model was applied to two tasks. In both tasks, the same
general architecture with GConvGRU (Graph Convolutional Gated
Recurrent Unit) layers, skip connections, ELU (Exponential Linear
Unit) activations, and linear layers was used. In the first task, we
compared our model to existing work and show our model has
up to a 31.44 percent decrease in mean squared error, and a 97.48
percent decrease in runtime. In the second task, we show our model
can help public health officials continue making COVID forecasts
on recent data where the number of active cases is no longer re-
ported, and show our model has up to a 99.77 percent decrease
in mean squared error in comparison to a standard GCN (Graph
Convolutional Network). The COVID Forecaster UI allows users
to extrapolate trends from visualizing and comparing COVID fore-
casts between different models. This UI was made with Dash, Plotly,
Heroku, Crontab, and Bash.

CCS CONCEPTS
• Human-centered computing → Visualization toolkits; • Ap-
plied computing→ Health informatics.
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1 INTRODUCTION
As COVID-19 has spread since December 2019, it has become in-
creasingly important to be able to accurately forecast future COVID-
19 case numbers to be able to make judicious decisions when it
comes to determining public health policies.

Models that employ traditional epidemiology, deep learning, and
a mixture of both have been developed to forecast future numbers
of COVID-19 cases. One such model is STAN, which stands for
spatio-temporal attention network [7].

One problem that has arisen with the creation of these pandemic
forecasting models (such as STAN) is that they may rely on the
number of active COVID-19 cases from the JHU COVID-19 dataset
if they use the SIR epidemiology model. This data was reported in
the JHU dataset early on during the pandemic; however, recently
JHU has stopped reporting this data [3, 4]. This is likely because
the JHU COVID-19 dataset relies on the COVID Tracking Project
(CTP) to report the number of recovered cases to determine the
number of active cases, and the CTP has stopped reporting the
number of recovered cases because: 1) many states have stopped
reporting the number of recovered cases resulting in an undercount
for the total number of national recovered cases, 2) there is no
standardized way to measure the number of recovered cases at a
state level, and 3) different states use different definitions of when
someone is recovered [12].

Consequently, it may be difficult for models that rely on the
use of the number of infected (active) and recovered cases from
the JHU COVID-19 dataset to directly be used with recent date
ranges in which SIR data is missing, or generalize and perform well
in the absence of this data (due to their dependence on SIR data).
Therefore, it would be beneficial if a model that doesn’t rely on
the use of data that is no longer reported was created so scientists
can continue to make forecasts of COVID-19 numbers. Ideally, this
model would be 1) able to learn how geography impacts the spread
of disease by using a graph neural network, 2) able to understand
how time impacts the spread of disease by using a time-series model
such as an RNN, LSTM, or a GRU, 3) able to understand patterns in
the spread of disease by leveraging convolutional filters, 4) easily
adaptable for use with recent data (for predicting cumulative future
cases) and older data (for comparison to models dependent on active
number of COVID-19 cases), and 5) comparable in performance to
previous models.

Another problem that has arisen with the creation of pandemic
forecasting models is that the output of some models may be in the
form of a CSV file or table with dates, location names, and predicted
future numbers of COVID-19 cases for each date-location combi-
nation. It may be difficult to interpret or extrapolate trends from
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a table or CSV file. An interactive visualization of the output may
be easier and more intuitive to understand than looking through
numbers in a table or file.

To summarize, problems that have come up with the creation of
pandemic forecasting models include:

(1) Reliance on data that has recently stopped being re-
ported.

(2) Interpreting and extracting trends from model predic-
tions.

To address these challenges, we propose the COVID Forecaster
framework which has the following contributions:

(1) COVID Forecaster Model. This work attempts to provide
a solution to the reliance of some models on unreported
data by proposing a model we call the COVID Forecaster
model. The COVID Forecaster model uses graph convolu-
tional GRU layers to capture temporal and geographic fea-
tures of pandemic data, along with skip connections to en-
sure outputs are scaled accurately, and linear layers to ensure
tensor shapes match when added during forward propaga-
tion [13, 14]. The COVID Forecaster model was applied to
two different tasks. The first task was to compare our model
to existing work. In this case, our model was trained on older
data when the active number of active COVID-19 cases was
still reported, our model predicts the number of future active
cases, and our model shows up to a 31.44 percent decrease
in mean squared error and a 97.48 percent decrease in run-
time. The second task was to allow public health officials
to continue making COVID forecasts on recent data where
the number of active cases is not reported. In this case, our
model was trained on more recent data when the number of
active cases is unreported, our model predicts the number of
cumulative future cases, and our model shows up to a 99.77
percent decrease in mean squared error.

(2) COVID Forecaster UI. This work also attempts to solve
the problem of improving interpretability of pandemic fore-
casting models by creating an interactive interface we call
the COVID Forecaster UI that visualizes both stored and
uploaded predictions for COVID-19 case numbers across
the United States. Our UI can be found here: https://covid-
forecaster-ui.herokuapp.com/

2 PREVIOUS WORK
2.1 COVID Deep Learning Models
STAN is a hybrid deep learning model that the COVID Forecaster
model architecture was inspired by. STAN combines a graph at-
tention network (GAT) with a gated recurrent unit (GRU) and the
SIR (Suspected-Infected-Recovered) epidemiology model [1, 15, 17].
The GAT captures the geographic impact of disease transmission,
the GRU captures temporal disease patterns, and the SIR model cap-
tures disease transmission dynamics. The JHU COVID-19 dataset as
well as geographic data such as the latitude, longitude, and popula-
tion of each location are used as the model’s input [5]. The predicted
number of future active and recovered COVID-19 cases are STAN’s
output. While STAN is a state of the art model that performs well
when trained on older data where the number of active cases is

reported, STAN has difficulty performing well on newer data where
the number of active cases has stopped being reported.

2.2 COVID Visualization
Well known COVID visualizations include the JHU COVID dash-
board and the NY Times COVID dashboard [10, 16]. While these
interactive dashboards visualize real time data, they suffer from the
following problems: 1) they only visualize historical data (as op-
posed to future predictions), 2) they visualize data from one source
(either the NY Times or the JHU COVID dataset), 3) they aren’t ex-
tensible as they don’t allow the user to visualize their own custom
dataset, and 4) they don’t allow for comparisons between different
models and data sources. Other work on COVID visualization in-
cludes that of Wissel et al., as well as that of Comba et al.; however,
they also only visualize historical data from a set data source and
aren’t directly extensible to visualizing data that is uploaded by
the user [2, 18]. Our work aims to create an extensible dashboard
that solves these problems by visualizing predictions (as opposed
to historical data) from files uploaded by the user. This allows the
user to compare and contrast predictions from different models (as
opposed to a single model) and data sources, thereby creating a
more well-rounded view on future case number predictions.

3 PROPOSEDWORK

Table 1: Notation used to describe model

Variable Meaning

G Graph given as input to model
V Vertices/Nodes (US states) in model
E Edges between nodes in model
X Input data (for all US states) to model
𝑥𝑖 Input data/Feature vector (for a single US state) to model
H Number of days of historical data used for each prediction
F Number of different types of features in input data
D Number of days into future for which predictions are made
Y Model output

ℎ
(𝑙+1)
𝑣𝑖 Feature vector of node 𝑣𝑖 in layer l+1
𝜎 Activation function used

GRU A pass through a GRU cell
j Indices of neighboring nodes of 𝑣𝑖
𝑐𝑖 𝑗 Normalization constant for edge (𝑣𝑖 , 𝑣 𝑗 )
ℎ
(𝑙)
𝑣𝑗 Feature vector of neighboring node j in layer l

W(l) Weight matrix of layer l for GConvGRU

z Input to ELU activation function
a Constant defining smoothness of function when inputs are negative

3.1 COVID Forecaster Model
To aid in the prediction of future COVID-19 case numbers and to
remove the reliance on unreported SIR data, we propose a deep
learning model we call the COVID Forecaster Model. The COVID
Forecaster Model uses graph convolutional GRU (GConvGRU) lay-
ers to simultaneously learn the impact of time on the spread of
disease from using convolutions and GRU cells, while also learning
the impact of location on the spread of disease from using a graph
neural network. Furthermore, linear layers and skip connections
are used to scale the output correctly.



COVID Forecaster: Interactive Visualizations of COVID Forecasts with Deep Learning
KDD-UC, Washington, D.C.,

3.1.1 Model inputs and output. The input to the COVID Forecaster
model should comprise of a graph G, and a matrix X (recent histori-
cal COVID-19 data). The graph G(V, E) is used to construct the graph
neural network and is comprised of nodes/vertices (V) which rep-
resent US states/regions, as well as edges (E) which convey which
states are adjacent and allow for message passing/aggregation in
graph neural networks. Furthermore, the historical input data (X =
[𝑥1, 𝑥2, ..., 𝑥 |𝑉 |]) should be a matrix of dimension |V| by H*F where
H is the number of days of past data that are used, and F is the
number of different features that are used. Additionally, 𝑥𝑖 = [𝑓1,1,
𝑓1,2, ..., 𝑓1,𝐻 , 𝑓2,1, ..., 𝑓𝐹,𝐻 ] is the feature vector for state i where 𝑓𝑗,𝑘
represents the value for feature j on day k of the historical data for
state i.

The output of the COVID Forecaster model should be a matrix Y
of dimension |V| by D (# days of into the future for which predictions
are made). Therefore, Y[i, j] would be the predicted value for state
i, at time j+1 days into the future.

3.1.2 Graph Construction. In the COVID Forecaster Model, we use
a graph neural network to capture disease transmission dynamics
from location in the United States. This requires the use of a graph
G(V, E) which is defined by its nodes (V) and edges (E).

Each node (V) in our graph represents a US state. In the COVID
Forecaster Model, there are 52 nodes in the graph we use.

Each node (representing a state) is connected by edges to all
of its adjacent states in the geographic United States. If a node
does not have any adjacent states in the United States, then it
is not connected to any other nodes in the graph. Each edge (E)
connecting two nodes in our graph has weight 1 and is neither
weighted differently due to proximity between nodes, nor weighted
differently due to differences or similarities in population size.

Figure 1: COVID Forecaster Model Architecture

3.1.3 Architecture. In our COVID Forecaster model, the input data
is passed through multiple graph convolutional GRU (GConvGRU)
layers (each of which can be thought of as a GRU unit stacked upon
a graph convolution for each node in the graph), exponential linear
unit (ELU) activations, and linear layers.

Of importance, we use skip connections in our architecture and
show that this results in better performance in our experiments.
Each time our model makes an inference, the previous H days of
data for various features are used as input data, and predictions of
the output feature (# active cases, or # cumulative cases) for the next
D days are made. If the output feature is the number of active cases,
then the input data will include the past H days of the number of
active cases. If the output feature is the number of cumulative cases,
then the input data will include the past H days of cumulative cases.
Since the next D days of active cases (or cumulative cases) will likely
differ by a small perturbation from the previous D days of active
cases (or cumulative cases), we hypothesize that by allowing this
data to bypass several graph convolutions and ELU activations via a

skip connection, the network has a smaller number (perturbation) to
learn which allows for faster training and more accurate inference.
However, since H may not always equal D, we use linear layers
to change the shape of the tensors to the desired shape before the
previous H days of the output feature is added to the predicted
perturbation from the output feature (where the perturbation is the
output of the 2 GConvGRU and ELU passes).

Below, we formalize a pass through a graph convolutional GRU
layer and activation function, where:

ℎ
(𝑙+1)
𝑣𝑖 = 𝜎 (𝐺𝑅𝑈 (

∑︁
𝑗

1
𝑐𝑖 𝑗

ℎ
(𝑙)
𝑣𝑗 𝑊

(𝑙) ))

Below, we formalize a pass through the exponential linear unit
(ELU) activation function, where:

𝜎 = 𝐸𝐿𝑈 (𝑧, 𝑎) =
{
𝑧 𝑧 > 0
𝑎 ∗ (𝑒𝑧 − 1) 𝑧 ≤ 0

Below, we will use X to denote the input data to the COVID
Forecaster Model. X is a matrix with dimension |V| by H*F, where
|V| is the number of locations used, H is the number of days of
historical data used to make each prediction, and F is the number
of different features used. In our case, |V| is 52 since we model 52
US states/regions, H is 6 because we use the 6 previous days of data
to make each inference, and F is either 4 or 6 depending on what is
being predicted. F is 4 when the future number of confirmed cases
is being predicted (and therefore the past number of confirmed
cases, past number of deaths, past daily change in confirmed cases,
and past daily change in deaths are used). F is 6 when the future
number of active cases is being predicted (and therefore the past
number of active cases and past daily change in number of active
cases are used in addition to the previously mentioned 4 features,
yielding a total of 6 different features).

To summarize, in the COVID Forecaster Model, the input X is
first passed through a linear layer. Below, X[ : , 0 : H] represents the
past H days of active (or confirmed, depending on what is being
predicted) case numbers for every US state.

ℎ1 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋 [:, 0 : 𝐻 ])

The input X is concurrently passed through two graph convolu-
tional GRU layers followed by ELU activations, and a linear layer.

ℎ2 = 𝐸𝐿𝑈 (𝐺𝐶𝑜𝑛𝑣𝐺𝑅𝑈 (𝑋,𝐺))

ℎ3 = 𝐸𝐿𝑈 (𝐺𝐶𝑜𝑛𝑣𝐺𝑅𝑈 (ℎ2,𝐺))

ℎ4 = 𝐿𝑖𝑛𝑒𝑎𝑟 (ℎ3)

Then, the output of the skip connection and the output from
the graph convolutional GRU layers are added together and passed
through a final ELU activation and linear layer to give the final
output Y of dimension |V| by D (# days of future predictions).

ℎ5 = 𝐸𝐿𝑈 (ℎ1 + ℎ4)

𝑌 = 𝐿𝑖𝑛𝑒𝑎𝑟 (ℎ5)
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3.1.4 Comparison between COVID Forecaster Model and Existing
Work. STAN and the COVID Forecaster model are similar in that
they both use a graph neural network, and they both use the JHU
COVID-19 dataset. STAN and the COVID Forecaster model also
both use exponential linear units (ELU’s) as activation functions,
and they both use the mean squared error (MSE) function for loss
calculations.

However, STAN and the COVID Forecaster model are different
in that the COVID Forecaster model does not use the SIR model, the
COVID Forecaster model uses skip connections, and the COVID
Forecaster model uses Seo et. al’s Chebyshev Graph Convolutional
Gated Recurrent Unit Cells (whereas STAN uses graph attention
layers that are combined with a GRU cell) [8]. Furthermore, the
COVID Forecaster model constructs the graph that is passed to
the graph neural network by connecting every state (represented
as a node in the graph) to each of its geographically neighboring
states, whereas STAN does not necessarily connect each state to
all of its geographically adjacent neighboring states. Instead, STAN
constructs the graph passed to the GNN by calculating the similarity
between every pair of US states based on location and population
size, and then connecting each state to a select number of states
that are most similar. In addition, COVID Forecaster trains one
model that can make predictions for all states in the United States,
whereas STAN trains a separate model for each US state. COVID
Forecaster also uses smoothing, whereas STAN uses normalization.
Lastly, COVID Forecaster was created with PyTorch Geometric due
to its implementation of graph convolutional gated recurrent unit
layers, whereas STAN was created with Deep Graph Library.

3.2 COVID Forecaster Interactive UI
To aid in efforts towards increasing interpretability of future COVID
case number forecasts and making trend extrapolation easier, we
created an interactive UI.

Our UI has a line graph showing the number of predicted COVID-
19 cases for the near future for each state and allows the user to:

• See how COVID-19 cases are slated to change in the near
future for each state

• Interact with the UI by zooming in/out and hovering over
the graph and seeing relevant information pop up

Since disease trends tend to be similar in locations that are close
to each other, our UI also has a choropleth map (a map where
different geographical locations are divided and the color, shading,
or pattern of each particular region corresponds to the intensity or
predicted number of COVID-19 cases). Our choropleth map allows
the user to:

• Interact with the map by using a slider (representing the
number of days into the future) to see how the intensity of
COVID-19 can change over time across states in the US

• Interact with the map by hovering their mouse over each
state

• Automatically update the state line graph displayed to corre-
spond to the state the user’s mouse is hovering over in the
US choropleth map so the user can compare and contrast
trends between different US states

While a UI displaying COVID-19 prediction trends for our COVID-
19 Forecaster model is useful, our UI also allows the user to upload,

visualize, and compare COVID-19 predictions from other models
so 1) the user has a more well-rounded view of predictions, and 2)
the functionality of the UI can be extended to other models.

3.2.1 UI Layout. In the top half of the COVID Forecaster UI, the
user can view our model’s predictions for the future number of
COVID-19 cases. This is shown through a choropleth map (US map)
on the top left half of the page and a line graph (state line graph)
on the top right half of the page.

In the middle of the COVID Forecaster UI, the user can upload
a CSV file with their model’s predictions for comparison to our
model’s predictions.

Subsequently, in the bottom half of the UI, the user’s uploaded
predictions are visualized similarly to how predictions are visual-
ized in the top half of the UI - with a choropleth map on the left
and a line graph on the right.

3.2.2 Technology. Our UI was created in Dash – a Python frame-
work written on top of Flask, Plotly.js, and React.js for building
interactive web applications [6]. We chose to use Dash because it
abstracts many technologies and protocols that would traditionally
be needed to build full stack web applications which allowed us to
make progress more quickly and iterate over different versions of
our UI. Another reasonwe chose to use Dash over other Pythonweb
frameworks such as Flask and Django is because it was easier to
customize and create interactive visualizations (as opposed to static
visualizations) because Dash provides callback functions which
allow the web app to dynamically respond to the user’s actions
while using the web app. To add on, Dash also provides detailed
documentation with examples of how to use it. Furthermore, an-
other reason we chose to use Dash in particular was because it was
a Python based framework and we wanted it to be able to more
easily interface with deep learning models/frameworks since many
machine learning/deep learning frameworks (Ex: Deep Graph Li-
brary (DGL), PyTorch/PyTorch Geometric, and TensorFlow) are
Python based.

Heroku is a cloud platform that manages hardware, servers, and
the infrastructure needed for web apps [9]. We chose to use Heroku
for our UI because it takes care of both hosting and deployment.

To update the UI with new data, we can use a Bash script. Bash
is the shell for the GNU operating system, and a bash script is a
text file containing a series of commands that we would normally
type into the command line to execute. We can use a bash script to
automate running these commands sequentially. In the bash script,
we can activate a Python virtual environment, run the training
pipeline (which should pull any new data, inference on the new
data, and write the predictions to a CSV file), and re-deploy the Dash
web app with the updated CSV file to Heroku, thereby updating
the interface.

Since we would like to update the UI automatically and regularly,
crontab in Linux can be used to run the bash script at pre-defined
intervals [8]. Crontab stands for cron table and is a job scheduling
system that is built into Linux. A crontab entry can be created to
periodically run the bash script previously discussed to update the
UI automatically and regularly, therefore removing the need to
manually re-run the bash script to update the UI.
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4 RESULTS AND DISCUSSION
We created a deep learning model to allow scientists to continue
making COVID forecasts in the absence of data previously used by
older models. We also created a UI to increase the interpretability
of COVID forecasts by other models.

4.1 COVID Forecaster Model Experiments
In this work, we applied the same general COVID Forecaster model
architecture with the same source of data (the JHU COVID-19
dataset) to two different experiments. In both experiments, our
model uses a graph neural network to model the impact of geogra-
phy on the spread of disease, a GRU to allow the model to learn how
time impacts the spread of disease, skip connections to scale the
output correctly, and linear layers to ensure tensors from previous
layers can have the desired shape when they are added to future
layers in skip connections. In our experiments, we chose to use
mean squared error (MSE), mean absolute error (MAE), and training
time to quantify performance.

In one experiment, we used older JHU data (May 1st, 2020 to
December 1st, 2020) when the number of active cases was still
reported, and the model output was the number of future active
cases. In this case, the input features used were the number of
confirmed cases in the past, the number of deaths in the past, the
daily change in the number of confirmed cases in the past, the
daily change in the number of deaths in the past, in addition to
the number of active cases in the past and the daily change in the
number of active cases in the past. In this experiment, we show
how the performance of the COVID Forecaster model compares to
previous work (STAN).

In another experiment, we used recent JHU data (May 1st, 2020
to March 7th, 2022), and the model output was the future number
of cumulative infected (confirmed) cases. In this case, the input
features were the number of confirmed cases in the past, the number
of deaths in the past, the daily change in the number of confirmed
cases in the past, and the daily change in the number of deaths in
the past. In this experiment, we show that predictions with recent
JHU COVID-19 data (where the number of active cases is no longer
reported) can be made.

Table 2: Preprocessing of model inputs and ground truth
labels

Data Category Model Input Ground truth

Training Smoothed Smoothed
Validation Smoothed Unsmoothed
Testing Smoothed Unsmoothed

4.1.1 Experimental Design: Data Preprocessing. The input to the
COVID Forecaster Model is always smoothed because smoothing
the model input doesn’t require past information about the data,
and because we would like to avoid irregularities in the data (such
as how frequently the data is reported) from affecting how the
model calculates its output.

However, the COVID Forecaster Model does not always use
smoothed data as the ground truth. Smoothed data is only used as

the ground truth for the training split of the data because we would
like to avoid irregularities in the data from affecting how theweights
for the model are updated in the loss calculation and subsequent
backpropagation, and because we don’t want the model to learn the
irregularities present in real world data. In contrast, unsmoothed
data is used as the ground truth for validation and testing because
we would like to see how well the model performs in the real world
where the data is not always smoothed, and because the validation
and testing ground truth values aren’t used in backpropagation
calculations so keeping the validation and testing dataset’s ground
truth labels unsmoothed won’t affect future predictions by the
model.

To smooth numbers, the COVID Forecaster Model uses the con-
volve function provided by the NumPy (Numerical Python) library
[11].

4.1.2 Predicting number of future active cases. In one experiment,
we compare the COVID Forecaster Model to the STAN model (base-
line). In this case, older data when the number of active COVID
cases was reported was used, and the number of future active cases
was the output of both models. In this comparison, each model was
trained for 50 epochs and 1000 epochs using the same source of
data and the same date range (May 1st, 2020 to December 1st, 2020).
The same testing dataset was used, and no GPU was used.

Table 3: Training time, MSE, and MAE for STAN and COVID
Forecaster

Model Epochs Sec./epoch MSE MAE

STAN 50 31.19 4.22 × 108 10121.36
STAN 1000 16.25 4.04 × 108 9545.22

COVID Forecaster 50 0.54 3.67 × 108 9820.94
COVID Forecaster 1000 0.41 2.77 × 108 6635.76

The COVID Forecaster model shows a 98.26 percent decrease
in training time compared to STAN when both models are trained
for 50 epochs, and a 97.48 percent decrease in training time com-
pared to STAN when both models are trained for 1000 epochs. We
hypothesize that the large percent decrease in training time for the
COVID Forecaster model is because STAN trains a separate model
for each US state, whereas COVID Forecaster uses the same model
to train across all US states.

Our COVID Forecaster model also shows a 13.07 percent de-
crease in mean squared error in comparison to STAN when both
models are trained for 50 epochs. Furthermore, the COVID Fore-
caster model also shows a 31.44 percent decrease in mean squared
error in comparison to STAN when both models are trained for
1000 epochs. To provide a fair comparison we also compared the
percent change in mean squared error across the best case for each
model and see again that the COVID Forecaster model has a 31.44
percent decrease in mean squared error in comparison to STAN.

We also present the mean absolute error in each experiment
to provide a better picture of the differences between each model.
This COVID Forecaster model shows a 2.97 percent decrease in
mean absolute error in comparison to STAN when both models are
trained for 50 epochs. Furthermore, the COVID Forecaster model
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also shows a 30.48 percent decrease in mean absolute error in
comparison to STAN when both models are trained for 1000 epochs.
To provide a fair comparison we compared the mean absolute error
across the best case for each model and see again that this COVID
Forecaster model has a 30.48 percent decrease in mean absolute
error in comparison to STAN.

4.1.3 Predicting number of cumulative future cases. A second ex-
periment was done to show that our model can help public health
officials continue to make COVID Forecasts in the absence of the
number of active cases. In this case, a date range with more recent
data (where the number of active cases is no longer reported) was
used, and the future number of cumulative cases was the output of
the model.

In this experiment, we compared the COVID Forecaster Model
(with skip connections) to the COVID Forecaster Model without
skip connections, as well as to a standard 2 layer graph convolu-
tional network (GCN). We did this to show how skip connections
and using a GCN with a GRU is better than using a standard GCN.
In each comparison, data from May 1st, 2020 to March 7th, 2022
was used, and each model was trained for 1000 epochs over the
same dataset with the same training, validation, and testing split.

In this experiment, we didn’t compare the COVID Forecaster
Model to STAN because recent data was used and STAN relies on
the use of data that has stopped being reported as of December
15th, 2020 [3].

Table 4: MSE and MAE of different architectures for compar-
ison

Model MSE MAE

COVID Forecaster 1.1942 x 1010 7.0671 x 104
COVID Forecaster w/o skip connection 2.4314 x 1012 9.7871 x 105

Standard GCN 5.1834 x 1012 1.5120 x 106

The COVID Forecaster model (with a skip connection) shows a
99.77 percent decrease in mean squared error in comparison to a
standard GCN, as well as an 95.33 percent decrease in mean absolute
error in comparison to a standard GCN.

4.2 COVID Forecaster UI
Our UI is accessible at: https://covid-forecaster-ui.herokuapp.com/

When the user loads the COVID Forecaster User Interface in a
web browser, the user can see our model’s predictions in the top
half of the page.

The bottom half of the page will initially be empty but will look
similarly to the top half of the page once populated. The bottom
half of the page can be populated by clicking on the "Select files"
prompt in the middle of the page and uploading the user’s model
predictions in the form of a CSV file.

In both the top and bottom half of the page, a US choropleth map
and a line graph are displayed side by side. The user can click and
drag on the slider under the choropleth map to see how the intensity
(represented by color) of COVID-19 is predicted to change over time
across the US. When the user hovers their mouse over a state in a
choropleth map, the line graph displaying the predicted number of

Figure 2: Top half of COVID Forecaster UI

COVID cases to the right of the choropleth map is automatically
updated to correspond to the state that the user’s mouse is hovering
over. Furthermore, when the user’s mouse hovers over a state in the
choropleth map or a point in the line graph, the predicted number
of COVID cases for the currently selected future date will appear
next to the user’s mouse.

5 FUTUREWORK
Future work for the COVID Forecaster model could involve inte-
grating vaccination data into the model, as well as looking for other
datasets that report the number of active infections and merging
them with the JHU dataset so models that rely on the SIR model can
have a complete set of SIR data to use for training. Future work on
the COVID Forecaster UI could involve generalizing the choropleth
map to different locations (such as those outside of the US), as well
as creating greater color variation from plotting the change in the
number of new cases (as opposed to total cumulative cases), and
plotting the normalized (instead of raw) number of cases for each
US state.

6 CONCLUSION
In this work, we present a deep learning model that can predict
future cumulative COVID case numbers, and we also present an
interface that allows users to visualize and compare COVID fore-
casts between different models. To implement the deep learning
model, we used PyTorch Geometric’s GConvGRU implementation,
linear layers, skip connections, and ELU activations. To implement
the interface, we used Dash and Plotly as the framework, CSV files
to store the data, Heroku for hosting the UI, and crontab in Linux
with a Bash script to regularly update the interface after retraining
our model with new data. We hope our model and our interface
can help government and public health officials make more well
informed decisions to control the COVID-19 pandemic.
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Our code is accessible at: https://github.com/AWUIUC/CS499-
SP22

A COVID FORECASTER UI
A.1 Running a local instance of the COVID

Forecaster UI
To run the UI locally, please:

(1) Install Python, and create/activate a Python virtual environ-
ment.

(2) Clone the repo linked above and navigate to the "CS499-
SP22/5. UI Code/" directory

(3) Install the necessary Python packages needed by running
the command: "pip install -r requirements.txt"

(4) Activate and run the UI by running "python app.py" and
then clicking on the link that shows up after successfully
creating an instance of the web app/UI.

A.2 Expected format of uploaded files in COVID
Forecaster UI

Given a CSV file that stores predictions for future COVID numbers,
the COVID Forecaster UI visualizes the stored predictions at the top
of the interface’s web page. The COVID Forecaster UI also allows
the user to upload a CSV file with predictions of future numbers of
COVID cases from other deep learning and epidemiology models
for visualization at the bottom of the interface’s web page and for
comparison to our model’s predictions.

In both cases, the CSV file should have 3 columns: date_today,
state, and cumulative_cases (or active_cases, depending on what
is being visualized). The values in the date_today column should
be of the form Year-Month-Day (Ex: 2022-02-15) and represent the
day into the future for which the corresponding prediction is made.
The values in the state column should be the abbreviation of a
state name (Ex: IL). Lastly, the values in the cumulative_cases (or
active_cases) column should be either floats or integers.

B COVID FORECASTER MODEL
As part of an effort to create reproducible results, the PyTorch
random number generator seed was set to 0 in all of the experiments
run and reported in this work. The data used can be found at:
https://github.com/CSSEGISandData/COVID-19

B.1 Reproducing results in Table 2 (Comparing
COVID Forecaster to STAN for 50 and 1000
epochs)

To reproduce the results in Table 2, please:
(1) Clone the repo to a Google Drive folder by:

• Navigate to drive.google.com in your web browser
• Click on the "New" button in the top left corner of the
screen

• Click on the "More" button
• Click on "Google Colaboratory"
• In a cell in the colab session, run the following commands
to mount the colab session to your Google Drive and clone
the repo:

(a) from google.colab import drive
(b) drive.mount(’/content/gdrive’)
(c) %cd "/content/gdrive/MyDrive/PATH-TO-DIRECTORY"
(d) !git clone https://github.com/AWUIUC/CS499-SP22.git

(2) Return to drive.google.com, open each of the following files
as a Google Colab session by double clicking on them. Then,
run all the cells in each Colab session:
• STAN for 50 Epochs: CS499-SP22/3. Experiments
/1. STAN-Original/Experiment2-50Epochs-Colab
/train_stan_old_data.ipynb

• COVID Forecaster for 50 Epochs: CS499-SP22
/3. Experiments/2. COVID_Forecaster
/train_v3.1_old_data_timed_50_epochs.ipynb

• COVID Forecaster for 1000 Epochs: CS499-SP22
/3. Experiments/2. COVID_Forecaster
/train_v3.2_old_data_timed_1000_epochs.ipynb

To reproduce the results in Table 2, please also
(1) Clone the repo to a local or virtual machine since the free

tier of Google Colab will terminate training sessions when
too much time has been spent in the Colab session.

(2) Install Python
(3) Create and activate a Python virtual environment
(4) Install the necessary libraries
(5) Run the file at CS499-SP22/3. Experiments

/1. STAN-Original/Experiment1-1000Epochs-Workstation
/train_stan_old_data.py"

B.2 Reproducing results in Table 3 (Comparing
COVID Forecaster with and without skip
connections to a standard GCN)

To reproduce the results in Table 3, please follow the same directions
for running Colab files in section B.1 but use the following files
instead:

• COVID Forecaster with skip connections for 1000 Epochs:
CS499-SP22/3. Experiments/2. COVID_Forecaster
/train_v3.3_new_data_COVID_Forecaster_full.ipynb

• COVID Forecaster without skip connections for 1000 Epochs:
CS499-SP22/3. Experiments/2. COVID_Forecaster
/train_v3.4_new_data
_COVID_Forecaster_no_skip_connections.ipynb

• StandardGCN for 1000 Epochs: CS499-SP22/3. Experiments/2.
COVID_Forecaster
/train_v3.5_new_data_standard_GCN.ipynb
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